Deformable Registration of Multi-Modal Data Including Rigid Structures
نویسندگان
چکیده
Multi-modality imaging studies are becoming more widely utilized in the analysis of medical data. Anatomical data from CT and MRI are useful for analyzing or further processing functional data from techniques such as PET and SPECT. When data are not acquired simultaneously, even when these data are acquired on a dual-imaging device using the same bed, motion can occur that requires registration between the reconstructed image volumes. As the human torso can allow non-rigid motion, this type of motion should be estimated and corrected. We report a deformation registration technique that utilizes rigid registration for bony structures, while allowing elastic transformation of soft tissue to more accurately register the entire image volume. The technique is applied to the registration of CT and MR images of the lumbar spine. First a global rigid registration is performed to approximately align features. Bony structures are then segmented from the CT data using a semi-automated process, and bounding boxes for each vertebra are established. Each CT subvolume is then individually registered to the MRI data using a piece-wise rigid registration algorithm and a mutual information image similarity measure. The resulting set of rigid transformations allows for accurate registration of the parts of the CT and MRI data representing the vertebrae, but not the adjacent soft tissue. To align the soft tissue, a smoothly-varying deformation is computed using a thin plate spline (TPS) algorithm. The TPS technique requires a sparse set of landmarks that are to be brought into correspondence. These landmarks are automatically obtained from the segmented data using simple edge-detection techniques and random sampling from the edge candidates. A smoothness parameter is also included in the TPS formulation for characterization of the stiffness of the soft tissue. Estimation of an appropriate stiffness factor is obtained iteratively by using the mutual information cost function on the result of the global deformable transformation. Keywords— multi-modality, registration, lumbar spine, rigid, elastic, X-ray CT, MRI
منابع مشابه
EVolution: an edge-based variational method for non-rigid multi-modal image registration.
Image registration is part of a large variety of medical applications including diagnosis, monitoring disease progression and/or treatment effectiveness and, more recently, therapy guidance. Such applications usually involve several imaging modalities such as ultrasound, computed tomography, positron emission tomography, x-ray or magnetic resonance imaging, either separately or combined. In the...
متن کاملNon-local Shape Descriptor: A New Similarity Metric for Deformable Multi-modal Registration
Deformable registration of images obtained from different modalities remains a challenging task in medical image analysis. This paper addresses this problem and proposes a new similarity metric for multi-modal registration, the non-local shape descriptor. It aims to extract the shape of anatomical features in a non-local region. By utilizing the dense evaluation of shape descriptors, this new m...
متن کاملOptimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps
Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...
متن کاملPoint similarity measures for non-rigid registration of multi-modal data
High-dimensional non-rigid registration of multi-modal data requires similarity measures with two important properties: multi-modality and locality. Unfortunately all commonly used multi-modal similarity measures are inherently global and cannot operate on small image regions. In this paper we propose a new class of multi-modal similarity measures, which are constructed from information of the ...
متن کاملEntropy and Laplacian images: Structural representations for multi-modal registration
The standard approach to multi-modal registration is to apply sophisticated similarity metrics such as mutual information. The disadvantage of these metrics, in comparison to measuring the intensity difference with, e.g. L1 or L2 distance, is the increase in computational complexity and consequently the increase in runtime of the registration. An alternative approach, which has not yet gained m...
متن کامل